Chapter 23 Correlation Analysis

- I. Correlation analysis measures the strength of the arithmetic relationship between two variables.
- II. Correlation may be visually represented with a scatter diagram.
 - A. Linda Smith is interested in analyzing the relationship between monthly advertising expenditures and monthly sales revenue. Data on these variables was first presented in chapter 7.

	,											
В.	Advertising expenditures (000)	5	2	7	6	10	4	6	5	3	8	
	Sales revenue (000)	50	25	80	50	90	30	60	60	40	80	

- C. She began by making a scatter diagram of the data.
 - Sales is the dependent variable because sales revenue, to some degree, is dependent upon advertising expenditures. This dependency was verified on page 121. The dependent variable is graphed on the y-axis.
 - 2. The independent variable, advertising expenditures, is graphed on the x-axis (abscissa).
 - 3. In chapter 24, we will learn to draw a regression line through the middle of a scatter diagram.
- III. The sample coefficient of correlation (r)
 - A. The coefficient of correlation (r) measures the strength of the relationship between 2 variables. It takes values between ± 1 inclusive.
 - B. The closer r is to either extreme, the higher (stronger) is the relationship (correlation).
 - 1. An r of about .8 or so is high positive correlation.
 - 2. An r of about .2 to -.2 is low correlation.
 - 3. An r of about -.8 or so is high negative correlation.

